Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Microbial Cell Factories and BioMed Central.

Open Access Research

Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses

Xi Zhang1, Tianyv Wang2, Wen Zhou3, Xianghui Jia1 and Haoyong Wang1*

Author Affiliations

1 Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China

2 Nanhu Middle School, Wuhan, 430060, China

3 Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, China

For all author emails, please log on.

Microbial Cell Factories 2013, 12:41  doi:10.1186/1475-2859-12-41

Published: 2 May 2013

Abstract

Background

Current methods of ethanol production from lignocelluloses generate a mixture of sugars, primarily glucose and xylose; the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions that affect their growth and productivity. Stress-tolerant strains capable of using both glucose and xylose to produce ethanol with high yield are highly desirable.

Results

A recombinant Zymomonas mobilis (Z. mobilis) designated as HYMX was constructed by integrating seven genes (Pfu-sHSP, yfdZ, metB, xylA, xylB, tktA and talB) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furious (P. furious) was used to increase the heat-tolerance, the yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. To overcome the bottleneck of CP4 being unable to use pentose, xylose catabolic genes (xylA, xylB, tktA and talB) from E. coli were integrated into CP4 also for construction of the xylose utilizing metabolic pathway.

Conclusions

The genomic integration confers on Z. mobilis the ability to grow in medium containing xylose as the only carbon source, and to grow in simple chemical defined medium without addition of amino acid. The HYMX demonstrated not only the high tolerance to unfavorable stresses like high temperature and low nutrient, but also the capability of converting both glucose and xylose to ethanol with high yield at high temperature. What’s more, these genetic characteristics were stable up to 100 generations on nonselective medium. Although significant improvements were achieved, yeast extract is needed for ethanol production.

Keywords:
Zymomonas mobilis; Heat shock protein; yfdZ; metB; Xylose fermentation; Ethanol production